Neuroactive steroids and peripheral neuropathy

The present review summarizes observations obtained in our laboratories which underline the importance of neuroactive steroids (., progesterone (PROG), dihydroprogesterone (5alpha-DH PROG), tetrahydroprogesterone (3alpha, 5alpha-TH PROG), testosterone (T), dihydrotestosterone (DHT) and 5alpha-androstan-3alpha,17beta-diol (3alpha-diol)) in the control of the gene expression of myelin proteins (. glycoprotein Po (Po) and the peripheral myelin protein 22 (PMP22)) in the peripheral nervous system. Utilizing different in vivo (aged and adult male rats) and in vitro (Schwann cell cultures) experimental models, we have observed that neuroactive steroids are able to stimulate the mRNA levels of Po and PMP22. The effects of these neuroactive steroids, which are able to interact with classical (progesterone receptor, PR, and androgen receptor, AR) and non-classical (GABA(A) receptor) steroid receptors is further supported by our demonstration in sciatic nerve and/or Schwann cells of the presence of these receptors. On the basis of the observations obtained in the Schwann cells cultures, we suggest that the stimulatory effect of neuroactive steroids on Po is acting through PR, while that on PMP22 needs the GABA(A) receptor. The present findings might be of importance for the utilization of specific receptor ligands as new therapeutical approaches for the rebuilding of the peripheral myelin, particularly in those situations in which the synthesis of Po and PMP22 is altered (. demyelinating diseases like Charcot-Marie-Tooth type 1A and type 1B, hereditary neuropathy with liability to pressure palsies and the Déjérine-Sottas syndrome, aging, and after peripheral injury).

Neuroinflammation represents a common feature of many neurodegenerative diseases implicated both in their onset and progression. Neuroactive steroids act as physiological regulators and protective agents in the nervous system. Therefore, the attention of biomedical research has been recently addressed in evaluating whether neuroactive steroids, such as progestagens, androgens, and estrogens may also affect neuroinflammatory pathways. Observations so far obtained suggest a general anti-inflammatory effect with a beneficial relapse on several neurodegenerative experimental models, thus confirming the potentiality of a neuroprotective strategy based on neuroactive steroids. In this scenario, neuroactive steroid metabolism and the sophisticated machinery involved in their signaling are becoming especially attractive. In particular, because metabolism of neuroactive steroids as well as expression of their receptors is affected during the course of neurodegenerative events, a crucial role of progesterone and testosterone metabolites in modulating neuroinflammation and neurodegeneration may be proposed. In the present review, we will address this issue, providing evidence supporting the hypothesis that the efficacy of neuroactive steroids could be improved through the use of their metabolites.

The discovery that the endogenous steroid derivatives 3 alpha-hydroxy-5 alpha-pregnan-20-one (allopregnanolone, or 3 alpha,5 alpha-TH PROG) and 3 alpha,21-dihydroxy-5 alpha-pregnan-20-one (allotetrahydrodeoxycorticosterone, or 3 alpha,5 alpha-TH DOC) elicit marked anxiolytic and anti-stress effects and selectively facilitate gamma-aminobutyric acid (GABA)-mediated neurotransmission in the central nervous system (see Chapter 3) has provided new perspectives for our understanding of the physiology and neurobiology of stress and anxiety. Evidence indicating that various stressful conditions that downregulate GABAergic transmission and induce anxiety-like states (Biggio et al., 1990) also induce marked increases in the plasma and brain concentrations of these neuroactive steroids (Biggio et al., 1996, 2000) has led to the view that stress, neurosteroids, and the function of GABAA receptors are intimately related. Changes in the brain concentrations of neurosteroids may play an important role in the modulation of emotional state as well as in the homeostatic mechanisms that counteract the neuronal overexcitation elicited by acute stress. Indeed, neurosteroids not only interact directly with GABAA receptors but also regulate the expression of genes that encode subunits of this receptor complex. This chapter summarizes observations from our laboratories and others, suggesting that neurosteroids and GABAergic transmission are important contributors to the changes in emotional state induced by environmental stress.

Neuroactive steroids and peripheral neuropathy

neuroactive steroids and peripheral neuropathy

Media:

neuroactive steroids and peripheral neuropathyneuroactive steroids and peripheral neuropathyneuroactive steroids and peripheral neuropathyneuroactive steroids and peripheral neuropathyneuroactive steroids and peripheral neuropathy

http://buy-steroids.org